

Efficient Key-Value Store implements key-value store with LSM-Trees

Snapshots

▶ can create and materialize snapshots asynchonously

▶ available as Java library babudb.googlecode.com

Metadata Server

Master/Slave Replication

► simple through replicated BabuDB store backend

▶ master election using distributed lease negotiation with FaTLease [1]

▶ split the directory tree into subtrees and distribute them onto several servers

The XtreemOS Project

European Research

Project (2006-2010)
► 19 partners from academia and China

> ▶ releases availble for download at www.xtreemos.eu

Internet Filesystem

Ready for the WAN

Architecture

Object-based File System

- **POSIX-compliant**

- interface: regular file system interface
 semantics: similar to a local file system

plug-in architecture for authentication, authorization, user mappings, replica selection and placement

Read/Write File Replication

4. Replica Set Changes

Metadata and Replica Catalog (MRC) metadata metadata operations NPUT.dat 1365 MB XtreemFS Client 10110101110 11010101001 Objects parallel data transfer

and industry from Europe

Results

- all components can be distributed and connected via WAN links
- ▶ client side caching

authentication based on certificates
 encryption of all network traffic

metadata: directory tree, file names, xattrs...
 objects: chunks of file data (content)

= no need to modify applications

Object Storage Devices (OSDs) file content

Software

- ▶ client for Linux, Windows and OS X ▶ servers for Linux and Solaris (Java 1.6+)

www.xtreemfs.org

Scalable I/O with Striping

scale the system by adding OSDs to increase: ► I/O bandwidth

- storage capacity

several striping schemes:

- ► RAID0 for performance ► RAID5 for data safety

881

Read-only File Replication

read(1)▶

Partial Replicas

▶ no overhead for coordination of replicas

contain only a subset of the file's data
 data is loaded and prefetched on demand
 saves bandwidth and disk storage
 quicker application startup

▶ to optimize bandwidth usage and minimize latency experienced

P2P Technology for Maximum Bandwidth ▶ OSDs exchange information on available objects for load balancing and to increase

= replication is transparent to users and applications

► no consensus in critical path ► layered architecture for simpler code

▶ allow user to relax consistency

Master/Slave with Failover

quential Consistency ▶ local file system semantics

Integrated Backup Architecture

Snapshots for Consistent Backups

- consistent metadata snapshots
- ► copy-on-write modification of file content

- only modified objects are copied
 fast restoration of different backup versions

Scalable Backup

- backup system automatically scales with production system
 scalable capacity
 scalable throughput

References

[1] F. Hupfeld, B. Kolbeck, J. Stender, M. Högqvist, T. Cortes, J. Malo, J. Marti. "FaTLease: Scalable Fault-Tolerant Lease Negotiation with Paxos." In: Proceedings of the International Symposium on High Performance Distributed Computing (HPDC) 2008.

[2] J. Stender, B. Kolbeck, F. Hupfeld, E. Cesario, E. Focht, M. Hess, J. Malo, J. Marti. "Striping without Sacrifices: Maintaining POSIX Semantics in a Parallel File System". 1st USENIX Workshop on Large-Scale Computing (LASCO '08), Boston, 2008.

XtreemOS is an Integrated Project supported by the European Commission's IST program #FP6-033576.

by the users

bandwidth