
BabuDB: Fast and Efficient File System Metadata Storage

Jan Stender, Björn Kolbeck, Mikael Högqvist
Zuse Institute Berlin

Berlin, Germany
Email: stender@zib.de, kolbeck@zib.de,

hoegqvist@zib.de

Felix Hupfeld
Google GmbH

Zurich, Switzerland
Email: hupfeld@google.com

Abstract—Today’s distributed file system architectures scale
well to large amounts of data. Their performance, however,
is often limited by their metadata server. In this paper, we
reconsider the database backend of the metadata server and
propose a design that simplifies implementation and enhances
performance.

In particular, we argue that the concept of log-structured
merge (LSM) trees is a better foundation for the storage layer
of a metadata server than the traditionally used B-trees. We
present BabuDB, a database that relies on LSM-tree-like index
structures, and describe how it stores file system metadata.

We show that our solution offers better scalability and per-
formance than equivalent ext4 and BerkeleyDB-based metadata
server implementations. Our experiments include real-world
metadata traces from a Linux kernel build and an IMAP mail
server. Results show that BabuDB is up to twice as fast as the
ext4-based backend and outperforms a BerkeleyDB setup by
an order of magnitude.

I. INTRODUCTION

Modern distributed file system architectures, like the
object-based design [1], [2] or the Google File System [3],
separate the management of metadata from the storage of
the file content. These architectures have been proven to
easily scale the storage capacity and bandwidth. However,
the management of the metadata remains a bottleneck [4],
[5], [6]. Studies have shown that approximately 75% of
all file system calls access file metadata [7]. Therefore, the
efficient management of metadata is crucial for the overall
file system performance. As a metadata server is only a thin
layer on top of a database, improving the performance of
the underlying database is the key to better performance of
the file system.

File systems traditionally use variations of B-trees as
storage backends for their metadata, e.g. ZFS, btrfs, Lus-
tre [8] or PVFS2. We break with this tradition and propose
to use an index structure similar to a log-structured merge
(LSM) tree [9] as a simpler and more efficient alternative
for metadata storage. These search trees are multi-version
data structures composed of several in-memory trees and an
on-disk index. The on-disk index is an immutable and sorted
list of records. Updates are applied to an active in-memory
tree and persistently stored in an operations log. A storage
backend based on such an index structure is well suited for

managing file system metadata for the following reasons:

• It can handle short-lived files particularly well: updates
to the metadata are persistently written to the operations
log, but do not modify the on-disk index and do not
require a re-balancing of a tree on disk. Since about
50% of all files are deleted within 5 minutes and
20% exist for less then 30 seconds [10], the efficient
handling of these files is important for the overall
performance.

• Atomic operations that require an atomic update of
multiple records such as rename can be done without
expensive transaction management. Since updates affect
only the in-memory trees, there is no need for locking
pages to prevent incomplete writes.

• Since data is never changed in-place, our index struc-
ture can easily handle variable-length keys and data.
This facilitates the handling of file system metadata like
extended attributes or ACLs.

• Listing directory content is particularly efficient. Since
the on-disk index is sorted, a directory listing results in
sequential reads of contiguous data.

• Database snapshots can be created instantaneously and
written to disk in an asynchronous fashion. This is
an important building block to implement file system
snapshots.

Several other properties of our index structure enhance
the performance on modern computer systems and simplify
the implementation:

• Since the on-disk index is immutable and sorted, its
data can easily be compressed resulting in a more effec-
tive memory and disk bandwidth [11], [12]. Similarly,
the layout of the on-disk index can be designed for
cache-efficiency as it does not need to handle updates.

• There is no need for custom memory management to
control the swapping of dirty pages. The on-disk index
is mapped read-only into memory letting the operating
system take care of paging.

• The lack of in-place overwrite of data reduces the
number of disk seeks significantly. Our indices also do
not need a block allocator that manages space on disk,
which simplifies the implementation substantially.



In this paper, we present BabuDB, a database which is
based on LSM-tree-like index structures. BabuDB is used
as the storage backend for metadata in the object-based file
system XtreemFS [13]. Both, BabuDB and the XtreemFS
metadata server are implemented in Java. Using LSM-tree-
like index structures leads to both less and simpler code: our
core index classes have about ten times less lines of code
compared to BerkeleyDB for Java.

We first present the general design of BabuDB in section
II. We continue with a description of how we efficiently
map the file system metadata onto a flat index structure. In
section IV, we compare the performance of our approach
with ext4 to show how our approach performs for metadata
management. As BabuDB is implemented in Java, we com-
pare it also with BerkeleyDB for Java (BDB4J). We show
that BabuDB is up to twice as fast as ext4 and an order
of magnitude faster than BDB4J while providing additional
functionality. An overview of the related work follows in
section V.

II. DESIGN OF BABUDB

A BabuDB database consists of a set of indices, a log
manager and a checkpointer. Indices are data structures
optimized for searching and storing records. Each record
consists of a key and a value of variable length. The
log manager persistently logs database modifications. When
adding, deleting or updating records, it appends new log
entries to a persistently stored operations log. The state of
the database can be restored from the operations log after a
system restart or crash. As soon as the size of the log exceeds
a threshold, a checkpoint is created asynchronously by the
checkpointer. After successful creation of a checkpoint the
operations log is truncated. Details about indices and the
internals of BabuDB will be described in the remainder of
this section.

A. Indices

An index in BabuDB consists of a list of N in-memory
trees and a single on-disk index (see Fig. 1). Records are
inserted, updated and deleted in the active tree (i.e. tree
N ), whereas all other trees and the on-disk index remain
immutable. A lookup is done by searching through all
in-memory trees from N to 1 and finally the on-disk index.
As soon as a record with a matching key is found, it is
returned. This ensures that a lookup always returns the
latest version of a record, as the list of trees is sorted such
that 1 refers to the oldest and N refers to the newest tree.

In-memory Snapshots: A snapshot is a consistent view
of the state of the index at a certain point in time. An in-
memory snapshot is created by appending a new (empty)
tree to the list of in-memory trees (see Fig. 1). Thereby, the
newly appended tree N + 1 becomes the active tree, and
the formerly active tree N becomes immutable. Thus, the

Figure 1: Illustration of a BabuDB index. Each index con-
tains a single mutable active in-memory tree, zero or more
immutable in-memory trees and an immutable on-disk index.

state of a snapshot K is determined by the state of snapshot
K − 1 and tree K. Lookups on an in-memory snapshot K
are performed in the same manner as regular lookups on the
active index, except that the search starts on tree K instead
of the active tree.

Record Deletion: When deleting a record, it is important
to keep in mind that one or more of the immutable trees
may contain older versions of the record. To guarantee
correct lookups, it is necessary to mark a record as deleted
instead of removing it from the active tree. This is done
by adding a special tombstone record. When a tombstone
record is found while searching the trees, the lookup aborts
and returns a result indicating that the record is not in the
index.

Prefix Lookups: In addition to normal lookups, BabuDB
supports prefix lookups that return all records with keys
that start with a given prefix key. The result of a prefix
lookup is an iterator that returns the respective records
in ascending key order. To create such an iterator, the
prefix lookup is executed on all in-memory trees. The
resulting iterators are incrementally merged, so that
only the latest version of a record is returned if records
with the same key are contained in several iterators. Prefix
lookups are implemented as a special case of range lookups.

On-Disk Index: An on-disk index is an immutable and
persistently stored list of records sorted by keys. The on-
disk index is created by materializing the current state of the
database to disk. It contains three parts (Fig. 2): A sorted list
of records which is divided into blocks, where each block
contains a fixed number of key-value pairs, a block index
that lists the first key and the offset of each block and a
pointer to the start of the block index.

Looking up a record requires two steps. First, the block
index is searched for the block that covers the range in which



the requested key is in. Then, the block itself is searched for
the matching record. We use binary search to find keys, both
within the block index and within the blocks.

The block index is always kept in memory. Therefore,
each lookup requires at most one disk seek. Additionally,
by mapping the index file into memory using mmap, indices
larger than the main memory are supported. Using mmap
leaves the memory management to the operating system and
thus avoids the complexity of a separate disk block manager.

blocks block index block
index 
pointer

Block 1 Block 2 Block N

Figure 2: Layout of an on-disk index file.

The internal layout of a block has been inspired by PAX
[14], which improves cache locality by grouping keys and
values together within a block. Each block starts with a
header followed by two mini-pages, one for keys and one
for values. The header contains the number of entries in the
block and a pointer to the mini-page with the values. The
mini-pages store their entries sequentially followed by a list
of pointers to each entry. This design allows for variable
length entries within a mini-page.

B. Checkpoints

Frequent insertions and deletions of records may cause
a growing memory footprint of the database, even if the
database itself does not grow, e.g. because of new trees being
created and tombstone records being added. Moreover, a
large operations log slows down the recovery of the database
when the system is restarted.

From time to time, checkpoints are created to clean up
the database and to truncate the operations log. They are
initiated by the checkpointer without interfering with regular
database operations. When creating a checkpoint, a new in-
memory snapshot is created. This snapshot is then traversed
using a prefix lookup. All records returned by the prefix
lookup are sequentially written to a new on-disk index
file. Finally, the current on-disk index file is replaced with
the new file. All in-memory trees but the active one are
discarded, and the obsolete operations log is deleted.

C. Persistent Snapshots

In-memory snapshots can capture and freeze former states
of an index, but do not survive checkpoints or system
restarts. To make snapshots persistent, they can be written to
individual on-disk index files before a checkpoint is created.
Subsequent accesses to a snapshot will then be directed to a

new immutable index backed by the respective on-disk index
file. To ensure that (in-memory) snapshots can be restored if
the system is restarted between a snapshot and a checkpoint,
a log entry recording the snapshot creation is appended to
the operations log when the snapshot is created.

In some cases, it may be sufficient to only capture a
subset of all records of an index in a snapshot. Such partial
snapshots save disk bandwidth and storage space. The set
of records to be included in a partial snapshot can e.g. be
specified by means of key patterns or prefixes. When writing
the on-disk index for a partial snapshot, only records with
keys that match one of the given prefixes or patterns will be
included.

D. Concurrency

To further simplify our architecture, we decided to reduce
concurrency to a shared reader/exclusive writer access per
index. This means that concurrent modifications are not al-
lowed on the active index. However, lookups can be executed
in parallel. Snapshots are immutable and can always be
accessed independently, which allows us to do checkpoints
and to write snapshots asynchronously in the background.
As a consequence, there is no need to implement complex
locking, latching and transaction handling mechanisms.

Even without concurrency, it is sometimes necessary
to update multiple records atomically. We support atomic
updates by grouping multiple record updates into an insert
group. When an insert group is processed, a single log
entry is appended to the operations log instead of a set
of individual log entries for each record. In the event of
a log replay, the insert group will be processed as a whole,
thus preserving atomicity. Since there is an exclusive write
lock on the index, all updates from the insert group will be
perceived as an atomic operation by other readers.

III. FILE SYSTEM METADATA MANAGEMENT

In this section we describe how the file system metadata
is stored and managed with BabuDB.

A. Metadata Mappings

BabuDB records are arranged in a flat namespace,
whereas file systems maintain their files in hierarchically
arranged directory trees. Thus, maintaining file system meta-
data in BabuDB requires the directory tree with the metadata
of all nested files and directories to be mapped to a non-
hierarchical set of database records.

With respect to the mapping of metadata, it is important to
consider that any access to a file or directory requires each
directory on the path to be checked for access rights. Getting
owner and permissions of a file or directory should therefore
require no more than a single database lookup. To access
directories as fast as possible, the readdir operation that
lists the content of a directory should map to a single prefix



(a) (b)

Figure 3: (a) Metadata layout. (b) Illustration of a mapping.

lookup in the database. This means that all directory entries
must have a common key prefix.

We decided to use record keys that consist of three parts:
the file’s or directory’s parent directory ID, the name and a
type. Thus, the metadata for each path component can be
retrieved with a single lookup, and the readdir operation
can retrieve the content of a whole directory including
getattr results for each nested element with a prefix
lookup to the parent directory’s ID.

Some attributes of a file’s or directory’s metadata are
updated more frequently than others. Time stamps and
file sizes are changed more often than metadata related
to e.g. file content locations, ownership, access control or
extended attributes. Because of the different access patterns,
we decided to split up the metadata of files and directories
into three different records, as shown in Fig. 3. The type
byte at the end of the key indicates the record type: type
1 records contain frequently updated attributes, type 2 and
type 3 records contain rarely updated attributes. Thus, most
metadata updates affect only one of the three records, which
results in small log entries to be written to the operations
log.

B. Hard Links

The mapping described above does not allow a file to
be linked to more than a single directory, as the unique
database key under which the metadata is stored reflects a
certain file name and parent directory. To support hard links
with POSIX semantics, an additional hard link index is used.
The hard link index resembles the original metadata index,
except that its keys start with file IDs instead of parent IDs
and file names. It stores the metadata of linked files, i.e. files
to which hard links have been created.

The link operation requires multiple steps to create a
hard link to an existing file. First, it checks whether the file
is linked already. A linked file is identified via a special link
record in the original metadata index, with a value that only
contains the linked file’s ID. If a link record is encountered
when looking up the file’s metadata, a new link can be added
by inserting an additional link record with the new link’s
parent ID and name as the key and the linked file’s ID as the

value. Adding a link also requires the link count in the type
2 metadata to be incremented. The link count is decremented
each time a link is removed; if it becomes zero, all of the
file’s metadata can be deleted.

If the file is not linked, i.e. normal metadata records are
encountered, it is necessary to make the file a linked file.
This includes an insertion of its metadata records in the hard
link index and a deletion of them from the metadata index.
In addition, a link record for the original link needs to be
added to the metadata index.

Retrieving metadata of a file with multiple hard links first
requires a retrieval of the file ID from the link record in the
metadata index. In a second step, the file ID can be used to
retrieve the metadata from the hard link index. As we expect
multiple hard links to a file to be the exception rather than
the norm, we consider the overhead caused by an additional
lookup as acceptable.

C. Atomic Operations

As defined in the POSIX standard, file system operations
such as rename and link have to be atomic, regardless of
whether they require multiple modifications in the storage
backend. The correctness of many applications, e.g. the
Dovecot mail server, depends on this atomicity. Any storage
backend for a metadata server must therefore support atomic
executions of multiple modifications. Traditional databases
can offer such semantics via transactions, which, however,
often involve a considerable performance penalty. With
BabuDB, atomic insert groups can be used as a lightweight
alternative.

D. File System Snapshots

To take a snapshot of a distributed file system, it is
necessary to take a snapshot of the file system’s metadata.
A BabuDB storage backend can instantaneously do this
by taking a database snapshot. Since all files stored in a
directory are mapped to records with the same key prefix,
snapshots of single directories can be easily created by
means of a partial snapshot of all records with the key prefix.
A recursive snapshot of a directory also requires the key
prefixes of all subdirectories to be included.



IV. EVALUATION

To assess the performance and scalability of our ap-
proach, we conducted experiments with the XtreemFS meta-
data server with three different storage backends: BabuDB,
BerkeleyDB for Java and ext4. We decided to include
BerkeleyDB for Java as it is based on a B+tree. The ext4
backend uses a regular ext4 file system to store the metadata
as directories and empty files. This approach is similar
to Lustre which uses ext4 as the storage backend for its
metadata server. We choose ext4 because it implements an
HTree, a variation of the B-tree optimized for file system
workloads.

We used the unmodified XtreemFS metadata server
(MRC) from the XtreemFS release 1.0RC1. For the Berke-
leyDB for Java and ext4 backends we took the code of
the XtreemFS MRC and replaced the storage backend. This
allows us to use identical code for most parts (except
backend) which should yield a fair comparison.

The first experiment measures the duration of file create
operations with the BabuDB backend. We compare the
duration during normal operations and while taking an
asynchronous database snapshot to assess the performance
impact of writing snapshots. The second experiment com-
pares the scalability of BabuDB, BerkeleyDB for Java and
ext4 by creating a large number of files in the same directory.
To evaluate the BabuDB on-disk file layout, we also compare
the performance for a directory listing (ls) from cache and
directly from disk (flushing the system’s page, inode and
dentry cache). Finally, we use two real-world workloads
to compare the performance of the different backends. We
recorded the metadata operations executed during a Linux
kernel build and from the Dovecot IMAP server. These
traces were replayed against all three backends.

A. Setup

All experiments were done on a single machine (one Xeon
E5335 CPU with four cores, 4 GB RAM and two 73GB
SAS 10k RPM hard drives) running Linux kernel 2.6.27.
We used OpenJDK 1.7 (build 1.7.0-ea-b52) as we required
the features of NIO2 for the ext4 backend. We used version
3.3.82 of BerkeleyDB for Java, locking and transactions
were disabled and deferred writes enabled.

B. Asynchronous Snapshots

One of the main features of BabuDB is the ability to
create database snapshots and checkpoints asynchronously
without interrupting normal operations of the MRC. In this
experiment we measured the latency of requests executed
sequentially during normal operations and while writing a
database snapshot concurrently. We used one disk for the
BabuDB operations log and the other disk for the database
snapshot files. Table I shows the results for creating 100,000
and 1,000,000 files, respectively. The results demonstrate
that BabuDB can provide acceptable response rates even

while writing snapshots to disk. The high standard deviation
σ together with the low P99 for 1,000,000 files during
snapshot indicate that there are some outliers with very high
latency (maximum is 1.5 ms). However, the vast majority of
the requests (P99) showed only an increase of up to 30% in
the response time while writing a snapshot.

C. File Creates

We submitted several batch requests of 1,000 to 1,000,000
create operations to the MRC using pipelining. After all files
have been created, we executed an ls operation (readdir
plus getattr for each file). We measured the total duration
of the create and ls with and without the influence of
system caches. To disable caching, we forced BabuDB to
create a checkpoint, forced all updates to be written to disk
(sync) and dropped all system caches between creating the
files and executing the ls. The results for file creates (Fig.
4, left) show that the ext4 and BabuDB backend exhibit a
similar performance for up to 100,000 files in a directory, but
BabuDB scales better with larger directories. BerkeleyDB
for Java has a good performance for very small databases
but does not scale well. Creating one million files was not
possible with BerkeleyDB for Java due to timeouts in the
client.

The performance characteristics shown for ls (Fig. 4,
right) are similar. For very large directories, BabuDB is even
faster with flushed caches, i.e. when reading from disk. This
is caused by the data structure used for the in-memory trees
(Java’s red-black trees), which is not optimized for range
reads.

D. Linux Kernel Build

We used a FUSE module to record all metadata oper-
ations executed while building the Linux kernel (2.6.27).
We replayed the trace sequentially with the BabuDB, the
ext4 and the BerkeleyDB for Java backend and measured
the total execution time. The trace consists of 9.9 million
operations (44% getattr, 40% open, 15% readlink,
1% others). BabuDB and the ext4 backend showed a similar
performance, BabuDB took 1,799 seconds and ext4 took
1,904 seconds. In contrast, BerkeleyDB for Java needed

# files avg. (ms) σ (ms) P99 (ms) size
normal
100,000 0.1908 1.9145 0.1974 16 MB
1,000,000 0.1934 3.2928 0.2047 155 MB
during checkpoint
100,000 0.3166 4.6740 0.2563 16 MB
1,000,000 0.4155 15.4259 0.2251 155 MB

Table I: Duration of a file create during normal operations
and while checkpointing. σ is the standard deviation, P99

the maximum among the fastest 99% of all requests, size is
the on-disk index size.



du
ra

tio
n 

(m
s)

0

50,000

100,000

150,000

200,000

number of files
1,000 10,000 100,000 1,000,000

create (babudb)
create (ext4)

BabuDB
ext4
BerkeleyDB for Java

du
ra

tio
n 

(m
s)

100

1,000

10,000

100,000

1,000,0001,000,000

number of files
1,000 10,000 100,000 1,000,000

BabuDB
ext4
BerkeleyDB for Java
BabuDB (caches flushed)
ext4 (caches flushed)

Figure 4: left: duration of file creates right: duration of ls operation (with and without caches)

36,323 seconds to complete. We analyzed a partial replay
of the trace with the Netbeans profiler. The profiling re-
vealed that BerkeleyDB for Java still does subtree locking
despite locking being disabled in the database configuration.
However, the locking accounted only for approx. 50% of
the time while the rest of the time was spent on the B-tree
search/insert/remove operations and the persistent operations
log.

E. Dovecot IMAP Server

For this experiment, we recorded the metadata operations
executed by a Dovecot mail server in the mailbox directory.
We configured Dovecot to be compatible with networked
file systems (e.g. no mmap, fcntl locking) and to use the
maildir format. To generate load, we ran the imaptest
stress test provided by the Dovecot developers which sim-
ulated five concurrent clients for 10 minutes. This resulted
in a trace with approximately 2 million metadata operations
(51% getattr, 48% open, 1% others). Again, BabuDB
and ext4 showed a similar performance with 367 and 385
seconds, respectively. BerkeleyDB for Java was an order of
magnitude slower with 5,912 seconds.

F. Summary

The experiments show that BabuDB is a good fit as a
metadata storage backend. It has a similar performance as
ext4 but scales better with large numbers of files. At the
same time, BabuDB offers asynchronous snapshots which
are not available in the other backends. We showed that
these snapshots have a low impact on the latency of file
creates.

V. RELATED WORK

Log-structured merge trees [9] have been proposed as
an alternative to B-trees for databases with a high rate of
record inserts. Unlike BabuDB indices, LSM-trees consist
of a single in-memory tree and multiple persistent on-disk
indices. The idea of applying concepts of LSM-trees to

large-scale databases has been made popular by Google’s
Bigtable [15] architecture. The BabuDB on-disk index layout
resembles the design of an SSTable that persistently stores
data of a Bigtable. With Bigtable, Google has demonstrated
that these concepts are suitable for very large databases in
the range of hundreds of terabytes.

Many database systems such as BerkeleyDB, MySQL and
modern file systems like btrfs use B-trees to organize their
data. A B-tree is a data structure for storing large, ordered
indices [16]. Its design is optimized for data which exceeds
the size of the main memory and has to be stored on a
hard disk. Several variations of the original B-tree [17] exist,
for example the B+tree which stores data only in the leaf
nodes. Multi-version B-trees [18], sometimes referred to as
copy-on-write B-trees, allow lookups and range queries on
any version of the tree. These can be used to implement
asynchronous checkpoints and snapshots with B-trees. The
ext4 file system uses a variant of the B-tree with a very high
fan-out called HTree [19], [20], which is optimized for file
system directories.

Database techniques have been applied to the problem of
metadata management in distributed file systems in various
ways. Lustre [8], the most prominent open-source cluster
file system, stores its metadata as inodes in a local ext4 file
system. Advanced features like snapshots and clustering of
metadata servers have been announced but not yet released.

Panasas ActiveScale [21] offers a commercially dis-
tributed alternative to Lustre. It relies on metadata managers
that mediate client access to file system metadata. The
metadata itself is attached to the file content and persistently
stored across the file servers, which use a proprietary local
file system purpose-built for object storage. Panasas offers
copy-on-write-based snapshot support at object and partition
level.

The CEPH parallel file system [22] stores its metadata
in an in-memory directory tree. Operations are persistently
logged for recovery. Such an architecture does not require
persistent checkpoints but only supports databases that fit in



the main memory.
A different approach to store file system metadata is to

use a dedicated database, as e.g. done by PVFS2 [23].
PVFS2 metadata is stored in BerkeleyDB, a general-purpose
key-value store [4]. In connection with PVFS, a variety of
alternative metadata distribution schemes have been exam-
ined [24], [25]. Most of them, however, require additional
mechanisms to ensure atomicity of operations that affect
multiple storage servers. With our BabuDB-based approach,
we circumvent such problems by offering the possibility of
atomic insertions of multiple records.

VI. CONCLUSION

We have presented BabuDB, a database that is based
on concepts of log-structured merge (LSM) trees, and de-
scribed its application to metadata storage for distributed
file systems. BabuDB only consists of a database log,
an on-disk search tree and a checkpointing mechanism,
but is well suited to the problem of storing file system
metadata. We have argued that BabuDB indices can handle
short-lived files, variable-length metadata such as extended
attributes and ACLs, and typical file system operations such
as rename and readdir very well. In addition, BabuDB
supports asynchronous database snapshots that provide the
basis for file system snapshots, which would otherwise
require complex multi-version B-trees.

Our experiments have demonstrated that BabuDB scales
better and is up to twice as fast as ext4 when used as
a storage backend for our metadata server, and that asyn-
chronously writing a checkpoint to disk has little impact on
the metadata server’s performance.

As future work, approaches will be studied to decrease the
storage overhead of persistent snapshots. When a snapshot
is written to disk, a diff to a previously taken snapshot
could be stored on disk instead of a complete representation
of the whole database state. This could help to reduce the
need for storage space if a considerable number of snapshots
is created.

BabuDB and XtreemFS are open source and available for
download at www.xtreemfs.org.

ACKNOWLEDGMENTS

This work was partially supported by the EU IST program
as part of the XtreemOS project (contract FP6-033576) and
SELFMAN.

REFERENCES

[1] M. Factor, K. Meth, D. Naor, O. Rodeh, and J. Satran, “Object
storage: The future building block for storage systems,” in
Local to Global Data Interoperability - Challenges and Tech-
nologies. Washington, DC, USA: IEEE Computer Society,
2005.

[2] M. Mesnier, G. Ganger, and E. Riedel, “Object-based stor-
age,” IEEE Communications Magazine, vol. 8, pp. 84–90,
2003.

[3] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file
system,” SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 29–43,
2003.

[4] P. Carns, S. Lang, R. Ross, M. Vilayannur, J. Kunkel, and
T. Ludwig, “Small-file access in parallel file systems,” in
Proceedings of the 23rd IEEE International Parallel and
Distributed Processing Symposium, April 2009.

[5] M. K. McKusick and S. Quinlan, “GFS: Evolution on fast-
forward,” Queue, vol. 7, no. 7, pp. 10–20, 2009.

[6] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller, “Dy-
namic metadata management for petabyte-scale file systems,”
in SC ’04: Proceedings of the 2004 ACM/IEEE conference
on Supercomputing. IEEE Computer Society, 2004.

[7] D. R. Jacob, J. R. Lorch, and T. E. Anderson, “A comparison
of file system workloads,” in In Proceedings of the 2000
USENIX Annual Technical Conference, 2000, pp. 41–54.

[8] Cluster File Systems Inc., “Lustre: A scalable, high-
performance file system,” 2002.

[9] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The log-
structured merge-tree (LSM-tree),” Acta Inf., vol. 33, no. 4,
pp. 351–385, 1996.

[10] J. K. Ousterhout, H. Da Costa, D. Harrison, J. A.
Kunze, M. Kupfer, and J. G. Thompson, “A trace-
driven analysis of the UNIX 4.2BSD file system,” EECS
Department, University of California, Berkeley, Tech.
Rep. UCB/CSD-85-230, Apr 1985. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/1985/5199.html

[11] A. L. Holloway, V. Raman, G. Swart, and D. J. DeWitt, “How
to barter bits for chronons: compression and bandwidth trade
offs for database scans,” in SIGMOD Conference, C. Y. Chan,
B. C. Ooi, and A. Zhou, Eds. ACM, 2007, pp. 389–400.

[12] M. Zukowski, S. Héman, N. Nes, and P. A. Boncz, “Super-
scalar RAM-CPU cache compression,” in ICDE, L. Liu,
A. Reuter, K.-Y. Whang, and J. Zhang, Eds. IEEE Computer
Society, 2006, p. 59.

[13] F. Hupfeld, T. Cortes, B. Kolbeck, J. Stender, E. Focht,
M. Hess, J. Malo, J. Marti, and E. Cesario, “XtreemFS: a case
for object-based storage in Grid data management,” in 3rd
VLDB Workshop on Data Management in Grids, co-located
with VLDB 2007, 2007.

[14] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Sk-
ounakis, “Weaving relations for cache performance,” in
VLDB, P. M. G. Apers, P. Atzeni, S. Ceri, S. Paraboschi,
K. Ramamohanarao, and R. T. Snodgrass, Eds. Morgan
Kaufmann, 2001, pp. 169–180.

[15] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber,
“Bigtable: a distributed storage system for structured data,” in
OSDI ’06: Proceedings of the 7th symposium on Operating
systems design and implementation. Berkeley, CA, USA:
USENIX Association, 2006, pp. 205–218.



[16] R. Bayer and E. M. McCreight, “Organization and mainte-
nance of large ordered indices,” Acta Inf., vol. 1, pp. 173–189,
1972.

[17] D. Comer, “Ubiquitous B-tree,” ACM Comput. Surv., vol. 11,
no. 2, pp. 121–137, 1979.

[18] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Wid-
mayer, “An asymptotically optimal multiversion B-tree,” The
VLDB Journal, vol. 5, no. 4, pp. 264–275, 1996.

[19] D. Phillips, “A directory index for Ext2,” in Proceedings of
the 2001 Annual Linux Showcase and Conference, 2001, pp.
20–20.

[20] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, and
L. Vivier, “The new ext4 filesystem: current status and future
plans,” in Proceedings of the Linux Symposium. Ottawa, ON,
CA, 2007.

[21] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller,
J. Small, J. Zelenka, and B. Zhou, “Scalable performance of
the Panasas parallel file system,” in FAST’08: Proceedings of
the 6th USENIX Conference on File and Storage Technolo-
gies. Berkeley, CA, USA: USENIX Association, 2008, pp.
1–17.

[22] S. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and
C. Maltzahn, “CEPH: A scalable, high-performance dis-
tributed file system,” in Proceedings of the 7th Conference on
Operating Systems Design and Implementation (OSDI ’06),
vol. 7. USENIX, November 2006.

[23] P. H. Carns, W. B. Lingon III, R. B. Ross, and R. Thakur,
“PVFS: a parallel file system for linux clusters,” in ALS’00:
Proceedings of the 4th annual Linux Showcase & Conference.
Berkeley, CA, USA: USENIX Association, 2000, p. 28.

[24] N. Ali, A. Devulapalli, D. Dalessandro, P. Wyckoff, and
P. Sadayappan, “Revisiting the metadata architecture of
parallel file systems,” in Third Petascale Data Storage Work-
shop, Supercomputing, November 2008. [Online]. Available:
http://www.cse.ohio-state.edu/ alin/papers/pdsw2008.pdf

[25] ——, “An OSD-based approach to managing directory
operations in parallel file systems,” in IEEE International
Conference on Cluster Computing, September 2008.
[Online]. Available: http://www.cse.ohio-state.edu/ alin/pa-
pers/cluster2008.pdf


